

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY 1 Colombo Street Yogyakarta 55281 Phone (0274) 565411, Ext. 1398, Fax (0274)548203 Website: http://kimia.fmipa.uny.ac.id, E-mail: kimia@uny.ac.id

Bachelor of Science in Chemistry

MODULE HANDBOOK

Module name:	Molecular Dynamics					
Module level, if applicable:	Undergraduate					
Code:	KIM 6406					
Sub-heading, if applicable:	-					
Classes, if applicable:	2					
Semester:	4 th					
Module coordinator:	Jaslin Ikhsan, Ph.D					
Lecturer(s):	1. Jaslin Ikhsan, Ph.D					
	2. Dr. Eli Rohaeti					
	3. Dr. Crys Fajar Partana					
Language:	Bahasa Indonesia and English					
Classification within the	Compulsory Subject					
curriculum:						
Teaching format / class	• Lectures: 150 minutes lectures, 180 structured activities					
hours per week during the	and 180 individual study per week					
semester:	Laboratory work: 170 minutes includes the laboratory work					
	and it's reporting per week					
Workload:	Total workload of the activity is 181,33 hours per semester					
	which consists of 150 minutes lectures, 180 structured					
	activities and 180 individual study and also 170 minutes					
	laboratory work with it's reporting per week for 16 weeks					
Credit points:	4 SKS (7 ECTS) with the details of 3 SKS (5 ECTS) lectures					
Prerequisites course(s):	Chemical Equilibrium					
Course Outcomes	After taking this course, the students are expected to be					
	able to:					
	CO1 Conduct molecular dynamics experiments to					
	complete chemical debate and research					
	CO2 Apply transitions to support life skills					
	CO3 Integrate mathematical concepts into solving					
	mathematical chemical problems					
Content:	This course studies about the molecular dynamics, which					
	include the theory of gas kinetics, moving molecules					
	(including gases and solutions), the rate of chemical reactions					
	(including: empirical chemical kinetics and explanation of the					
	law of speed), and complicated reaction kinetics. This course					
	also learn about the theory and practicum in the laboratory.					
	Learning Materials:					
	1. The Gas Kinetics Theory					
	2. Reaction Rate					
	3. Moving Molecules					
	4. Conductance and Conductivity					
	5. Ostwald dilution law					

Study / exam achievements:	 b. <i>pKa</i> relationship with the results of conductivity measurements 7. IPN Mobility 8. Transport numbers 9. Measurement of transport numbers 10. Relationship of ion conductivity and transport numbers 11. Calculating thermodynamic forces 12. Infusion and Einstein's relationship 13. Diffusion and Nerst-Einstein equations 14. Stokes-Einstein's diffusions and equations Attitude assessment is carried out at each meeting by observation and/or self-assessment techniques using the assumption that basically every student has a good attitude. The student is marked very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not taken into account in the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow: 						
	No	СО	Assessment Object	Assessment Technique	Weight		
	1	CO1, CO2, CO3,	 a. Assignments b. Activity c. Final Exam d. Laboratory Activities 	Presentation / written test	20% 20% 30% 30%		
Forms of media:	Hand	lout. Boa	ard, LCD Proiector, L	Total aptop/Compute	100% r. Module.		
	Labo	ratory W	ork equipment				
References:	 Snehanshu Pal and Bankim Chandra Ray, 2020, Molecular Dynamics Simulation of Nanostructured Materials: An Understanding of Mechanical Behavior, 1st Ed., CRC Press Dominik Marx, 2012, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press Zhang, YX., Wang, N., Li, QF. et al., 2020, Progress of quantum molecular dynamics model and its applications in heavy ion collisions. <i>Front. Phys.</i> 15, 54301 Hunday Govindasamy, Sivanandam Magudeeswaran & Kumaradhas Poomani, 2020, Identification of novel flavonoid inhibitor of Catechol-O-Methyltransferase enzyme by molecular screening, quantum mechanics/molecular mechanics and molecular dynamics simulations, <i>J. Biomol. Struct. Dyn.</i>, 38:18, 5307-5319 Boyd, R. J. (2007). The development of computational chemistry in Canada. Reviews in Computational Chemistry, 15, 213–299 						

	 P.W. Atkins, Physical Chemistry, Oxford University Press. P.W. Atkins, Kimia Fisika Jilid 2 (terjemahan), Erlangga Jakarta. Ira N. Levine, Physical Chemistry, McGraw-Hill. Keith J. Laider, Chemical Kinetics, HarperCollins Publisher. 					

PLO and CO mapping

	PLO									
	Attitude	General Skill		Knowledge				Specific Skill		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1										
CO2										
CO3										