UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY

1 Colombo Street Yogyakarta 55281 Phone (0274)565411, Ext. 1398, Fax (0274)548203 Website: kimia.fmipa.uny.ac.id, E-mail: kimia@uny.ac.id

Bachelor of Science in Chemistry

MODULE HANDBOOK

Module name:	Fundamentals of Analytical Chemistry							
Module level, if applicable:	Undergraduate							
Code:	KIM 6411							
Sub-heading, if applicable:	-							
Classes, if applicable:	2							
Semester:	3 rd							
Module coordinator:	Sunarto, M.Si							
Lecturer(s):	1. Sunarto, M.Si.							
	2. Regina Tutik Padmaningrum, M.Si.							
	3. Erfan Priyambodo, M.Si.							
Language:	Bahasa Indonesia and English							
Classification within the curriculum:	Compulsory Subject							
Teaching format / class	a Lasturas: 150 minutes lasturas, 190 structurad activities and							
hours per week during the	Lectures: 150 minutes lectures, 180 structured activities and 180 individual study per week							
semester:	180 individual study per weekLaboratory work: 170 minutes includes the laboratory work							
Scriticator.	and it's reporting per week							
Workload:	Total workload of the activity is 181,33 hours per semeste							
Workload.	which consists of 150 minutes lectures, 180 structured							
	activities and 180 individual study and also 170 minutes							
	laboratory work with it's reporting per week for 16 weeks							
Credit points:	4 SKS (7 ECTS) with the details of 3 SKS (5 ECTS) lectures							
erean penner	and 1 SKS (2 ECTS)							
Prerequisites course(s):	General Chemistry							
Course Outcomes	After taking this course, the students are expected to be able							
	to:							
	CO1 Apply basic concepts of analytical chemistry to							
	solve chemical research problems through							
	laboratory activities							
	CO2 Applying chemical analysis theory to overcome							
	environmental problems							
	CO3 Applying analytical chemistry concepts to innovate							
	in conducting chemical research							
Content:	The basics of analytical chemistry include Chemistry							
	Qualitative and Quantitative Analysis. Qualitative analysis is							
	the identification of sample components with spe							
	reagents. Quantitative analysis is the determination of							
quantities (grams, percent) by volumetric techniques. Le								
	emphasizes the mastery of lecture material logically and							
	scientifically and the ability to use scientific methods to solve							

problems faced by students. Qualitative analysis includes: Introduction (the nature of chemical analysis, the type of chemical reaction, the role of chemical analysis, and the steps in analysis), the properties of solutions, various concentrations of solutions and how they are made, chemical equilibrium solutions (acid-base equilibrium. complex. redox and electrochemical, precipitation), and Analysis of cations and anions. Quantitative Analysis includes: Gravimetry, Acid-base Titration, Complex Formation Titration, Oxidation-reduction Titration, Precipitation Titration. Also discussed is the accuracy, position, and error of the results of the analysis and statistical tests of the analysis (different tests with t-test, Anava 1 road, 2 roads). Study / exam achievements: Attitude assessment is carried out at each meeting by observation and/or self-assessment techniques using the assumption that basically every student has a good attitude. The student is marked very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not taken into account in the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow: CO No Assessment Assessment Weight Object Technique CO1, 20% a. Assignments Presentation CO2, b. Activity / written test 10% CO3, c. Midterm Exam 25% d. Final Exam 25% e. Laboratory 20% Activities Total 100% Forms of media: Handout, Board, LCD Projector, Laptop/Computer, Module, Laboratory Work equipment I Made Sukarna (2007). Diktat Kimia Analisis 1. Analisis References: Kualitatif. Jurusan Pendidikan Kimia FMIPA UNY • Cases, M. V., & Lopez-Lorente, A. I. (2017). Foundations of analytical chemistry: A teaching learning approach. Springer Nature. MaHam, A., & Ham, B. M. (2015). Analytical chemistry: A chemist and laboratory technician's toolkit. John Wiley & Bassett, at all. (Revisers). (1978). Vogel's Text Book of Quantitative Inorganic Analysis. Including Elementary Instrumental Analysis. Fourth Ed. London and New York: Longman. Day, R.A, Underwood, A.L. (1989). Analisis Kimia

 Kuantitatif. Edisi 5. Jakarta: Erlangga Khopkar. S.M. (1990). Konsep Dasar Kimia Analitik. Cetakan I. Jakarta: UI Press.
Suggested Reading: Farjami, F., Fasihi, F., & Moradi, S. E. (2020). Determination of amitriptyline on a carbon nanocomposite ionic liquid electrode. <i>Journal of Analytical Chemistry</i> , 75, 941-950. Eddaif, L., Shaban, A., & Telegdi, J. (2019). Sensitive detection of heavy metals ions based on the calixarene derivates-modified piezoelectric resonators: a review. <i>International Journal of Environmental Analytical Chemistry</i> , 99(9), 824-853.

PLO and CO mapping

	PLO									
	Attitude	General Skill		Knowledge				Specific Skill		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1					V					
CO2								V		
CO3										$\sqrt{}$