

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY

1 Colombo Street Yogyakarta 55281

Phone (0274) 565411, Ext. 1398, Fax (0274)548203 Website: http://kimia.fmipa.uny.ac.id, E-mail: kimia@uny.ac.id

Bachelor of Science in Chemistry

MODULE HANDBOOK

Module name:	Pharmaceutical Chemistry						
Module level, if applicable:	Undergraduate						
Code:	KIM 6216						
Sub-heading, if applicable:	-						
Classes, if applicable:	2						
Semester:	4 th						
Module coordinator:	Prof. Dr. Nurfina Aznam						
Lecturer(s):	Prof. Dr. Nurfina Aznam						
Language:	Bahasa Indonesia and English						
Classification within the	Compulsory Subject						
curriculum:							
Teaching format / class	100 minutes lectures, 120 structured activities and 120						
hours per week during the	individual study per week						
semester:							
Workload:	Total workload is 90,67 hours per semester which consists						
	of 100 minutes lectures, 120 structured activities and 120						
	individual study per week for 16 weeks						
Credit points:	2 SKS (3 ECTS)						
Prerequisites course(s):	Biochemistry						
Course Outcomes	After taking this course, the students are expected to be						
	able to:						
	CO1 Explain the pharmacokinetic-pharmacodynamic						
	principles of drugs, as well as the structure and						
	activity of drugs for understanding pharmacy in						
	society						
	CO2 Applying the concepts of the influence of how						
	drug administration as a technique for solving						
	pharmaceutical problems in the community						
	CO3 Presenting the idea of innovation in the						
	development of traditional medicines as						
Contant	pharmaceutical chemical research innovations						
Content:	Learn about the basic concepts of the development of drug						
	history, methods of administration of drugs, pharmacokinetic						
	principles, pharmacodynamic principles, drug						
	biopharmaceutical aspects, main effects and side effects of						
	drug use, chemical structure of drug molecules, drug-						
	receptor structure interactions and activity the biology, the						
	relationship of structure and drug activity.						
	Introduction						
	History of drug developmentKinds of dosage forms and drug classes						
	Systematic effects and local effects						
	 Transport system, absorption, biotransformation, 						
Transport system, absorption, biotransionnation,							

distribution and excretion Plasma concentration Dosage and combustion scheme The mechanism of action of the drug and therapeutic effects Effects of unwanted drugs Toxic effects Tolerance, habituation, addiction Bacterial resistance the carrier group Biofunctional functional group haptoforic and pharmacophoric groups Acid-base properties of drugs Degree of drug ionization Drug interaction Receptor side theory Suppresses the central nervous system Study / exam achievements: Attitude assessment is carried out at each meeting by observation and/or self-assessment techniques using the assumption that basically every student has a good attitude. The student is marked very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not taken into account in the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow: No CO Assessment Assessment Weight Object Technique CO1, a. Participation Presentation 5% CO2, b. Assignment / written test 25% CO3. c. Mid-term exam 30% 40% d. Final Exam Total 100% Handout, Board, LCD Projector, Laptop/Computer, Module Forms of media: OlgaMalev MarioLovrić Draženka Stipaničeve Siniša References: Repece, Dalma Martinović-Weigeltf Davor Zanellab TomislavIvanković ValneaSindičić **Đuretecg Josip** Barišićh Mei Lii Göran Klobučar 2020. Toxicity prediction and effect characterization οf pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia), Environmental Pollution vol 266 B. Cormac Kennedy Linda Brewer David Williams, 2020, Drug interactions, Medicine, vol 48, issue 7 C. Zhenyu Sui, Qing Li, Lin Zhu, Zhenru Wang, Chunxiao Lv, Ran Liu, Huarong Xu, Bosai He, Zuojing Li, Kaishun Bi,2017,An integrative investigation of the toxicity of Aconiti kusnezoffii radix and the attenuation effect of its processed drug using a UHPLC-Q-TOF based rat serum and urine metabolomics strategy, *Journal of Pharmaceutical and Biomedical Analysis*, Volume 145, Pages 240-247, https://doi.org/10.1016/j.jpba.2017.06.049.

- D. Jill Barber, Chris Rostron 2013, Pharmaceutical Chemistry (Integrated Foundations of Pharmacy).
 Oxford
- E. Grushevskaya, L.N., Sergeeva, M.S., Gaevaya, L.M. *et al.* Development of a Method for Determination of Related Impurities in GML-3 Drug Substance: A New Compound with Anxiolytic Properties. *Pharm Chem J* (2020). https://doi.org/10.1007/s11094-020-02284-x
- F. Filatova, A.V., Turaev, A.S. & Vypova, N.L. Fludigel Composition Development and its Anti-Inflammatory and Anti-Allergic Properties. *Pharm Chem J* (2020). https://doi.org/10.1007/s11094-020-02281-0

PLO and CO mapping

	PLO									
	Attitude	General Skill		Knowledge				Specific Skill		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1					V					
CO2								V		
CO3										