

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY

1 Colombo Street Yogyakarta 55281

Phone (0274) 565411, Ext. 1398, Fax (0274)548203 Website: http://kimia.fmipa.uny.ac.id, E-mail: kimia@uny.ac.id

Bachelor of Science in Chemistry

MODULE HANDBOOK

Module name:	Selected Topics on Chemical Research						
Module level, if applicable:	Undergraduate						
Code:	KMA 6218						
Sub-heading, if applicable:	-						
Classes, if applicable:	2						
Semester:	5 th						
Module coordinator:	Jaslin Ikhsan, Ph.D						
Lecturer(s):	1. Jaslin Ikhsan, Ph.D						
	2. Dr. Sri Handayani						
Language	3. Dr. Cahyorini Kusumawardani						
Language: Classification within the	English Compulsory Subject						
	Compulsory Subject						
curriculum: Teaching format / class	100 minutes lectures, 120 structured activities and 120						
hours per week during the	individual study per week						
semester:	individual study per week						
Workload:	Total workload is 90,67 hours per semester which consists						
Workload.	of 100 minutes lectures, 120 structured activities and 120						
	individual study per week for 16 weeks						
Credit points:	2 SKS (3 ECTS)						
Prerequisites course(s):	-						
Course Outcomes	After taking this course, the students are expected to be						
able to:							
	CO1 Show responsibility in writing chemical						
	research designs						
	CO2 Apply scientific methods and principles of using						
	Information and Communication Technology						
	(ICT) for the purposes of storing, analyzing,						
	processing, and collecting data in the fields of						
	chemistry, research and industry						
	CO3 Analyze the implications of the development or						
	implementation of science and technology in						
	accordance with their expertise based on						
	rules, procedures and scientific ethics in order						
	to produce ideas and solutions to chemical problems						
	CO4 Writing chemical research ideas that show						
	innovation for society						
Content:	Selected Chemistry Research Topics study various						
	research topics that have been developed and the ethics						
	of writing articles:						
	Definition of Ethics and Style of Article Writing in the						
field of science, chemical aspects 2. Selection of themes from research articles in the field							

Forms of media: Har	of organic chemistry, inorganic chemistry, biochemistry, analytical chemistry, and physical chemistry from international and national journals. 3. Analysis of research articles on the fields of organic chemistry, inorganic chemistry, biochemistry, analytical chemistry and physical chemistry from international journals and national journals 4. Writing the Report of Analysis Results 5. Preparation of TAS Introduction Attitude assessment is carried out at each meeting by observation and/or self-assessment techniques using the assumption that basically every student has a good attitude. The student is marked very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not taken into account in the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow:								
Forms of media: Har	No CO Assessment Assessment Object Technique								
	CO3,	a. Participationb. Assignmentc. Mid-term examd. Final Exam	Presentation / written test	5% 25% 30% 40%					
+	Total 100%								
3.	 Handout, Board, LCD Projector, Laptop/Computer, Module Ali Saukah dan Mulyadi Guntur Waseso (2006), Menulis Artikel untuk Jurnal Ilmiah, Universitas Negeri Malang, Malang. Mabry, T.J. (2001), Selected Topics from Forty Years of Natural Products Research: Betalains to Flavonoids, Antiviral Proteins, and Neurotoxic Nonprotein amino Acids, Journal of Natural Products, 64, 12, 1596-1604 Sing, I.S. (2015), The effect of using Concept Maps on Student Achievement in Selected Topic in Chemistry at Tertiary Level, Journal of Education and Practice. Nol 6, No 15 Tellez, F. (2020), 33 Critical Topics in Chemistry for 								

PLO and CO mapping

	PLO									
CO	Attitude	General Skill		Knowledge				Specific Skill		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1										
CO2										
CO3								V		
CO4										V