

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY 1 Colombo Street Yogyakarta 55281 Phone (0274) 565411, Ext. 1398, Fax (0274)548203 Website: http://kimia.fmipa.uny.ac.id, E-mail: kimia@uny.ac.id

Bachelor of Science in Chemistry

MODULE HANDBOOK

Madula nomo	Computational Chamistry				
Module lavel if applicable:					
Code:	NINA0210				
Sub-neading, if applicable:	-				
Classes, if applicable:	2 ath				
Semester:	6 ^m				
Module coordinator:	Dr. Suwardi				
Lecturer(s):	1. Dr. Suwardi				
	2. Dr. Crys Fajar Partana				
Language:	Bahasa Indonesia				
Classification within the	Compulsory Course				
curriculum:					
Teaching format / class	• Lectures: 50 minutes lectures, 60 structured activities and				
hours per week during the	60 individual study per week				
semester:	• Laboratory work: 170 minutes includes the laboratory work				
	and it's reporting per week				
Workload:	Total workload of the activity is 90,67 hours per semester				
	which consists of 50 minutes lectures, 60 structured activities				
	and 60 individual study and also 170 minutes laboratory work				
	with it's reporting per week for 16 weeks				
Credit points:	2 SKS (3 ECTS) with the details of 1 SKS (2 ECTS) lectures				
	and practical work of 1 SKS (2 ECTS)				
Prerequisites course(s):	Mathematics for Chemistry, Quantum Chemistry				
Course Outcomes	After taking this course, the students have ability to:				
	CO1. Students can explain the scope of computational				
	chemistry				
	CO2. Students can explain the method of molecular				
	mechanics (force field method)				
	CO3. Students can explain the molecular dynamics method				
	CO4. Students can explain surface potential energy				
	CO5. Students can explain the Hartree-Fock molecular orbital				
	theory				
	CO6. Students can explain Base sets				
	CO7. Students can explain geometry optimization				
	CO8. Students can explain density functional theory (DFT)				
	CO9. Students can explain solvation and examples of it's				
	application				
Content:	Computational Chemistry courses cover learning about the				
	basic concepts in molecular mechanics and quantum				
	mechanics and their applications especially in studying the				
	structure and dynamics of fluid systems (solvation),				
	theoretical approaches such as HF (Hartree-Fock) theory,				
	DFT (Density Functional Theory) and Force Field Methods				
	(Molecular Mechanics); In this study, it will be studied/				

	demonstrated the use of some computational chemistry							
	software such as Gaussian, Turbomole, Hyperchem and							
	Gromacs in solving chemical problems and interface							
	programs such as Gaussview, Tmolex and VMD in							
	processing data on simulation and modeling results.							
Study/ exam achievements:	The final mark will be weight as follow:							
	No	CO	Assessment Object	Assessment Technique	Weight			
	1	CO1, CO2,	Individual assignment	Assignment	15%			
		CO3, CO4,	Structural assignment	Assignment	15%			
		CO5, CO6,	Practical work	Observation Report	20%			
		CO7, CO8, CO9	Mid-term exam	Written test	20%			
			Final exam	Written test	30%			
	Total 100							
Forms of media:	Boar and s	d, LCD Projectationaries	ctor, handouts, l	PPT slides, labor	atory kits,			
Reference:	A. Po	onnadurai Ra	masami, 2020,	Computational	Chemistry			
	M	ethods: Appli	cations, 1 st ed.,	De Gruyter	-			
	B. Fr	ank Jensen	, 2017, Introc	luction to Com	putational			
	Cł	nemistry, 3 rd e	ed. Wilev		•			
	C. Vi	go-Aquiar, J	Ramos H. 20	17. Recent math	nematical-			
	CO	moutational t	echniques and r	nodels in chemis	try .I Math			
		hom 55 1367	'_1369		ay: o maar			
	ה א ח	$rb \cap Stüt$		TE 2011 A	colorating			
	m m	molecular docking calculations using graphics processing						
	UNITS. J. Chem. Int. Model. 51, 865–876							
	Theory and Applications of Molecular and Ouantum							
	Mechanics (Errols Lewars)							
	F. CO		NAL CHEMIST	RY: A Practical	Guide for			
	Ap Yo	oplying Tech	niques to Real-	World Problems	Vorld Problems (David C			
	G. Exploring Chemistry with Electronic structure Methods (James B Foresman)							

PLO and CO mapping

	PLO									
CO	Attitude	Generi	ic Skills	Knowledge				Specific Skills		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1										
CO2										
CO3										
CO4										
CO5										
CO6										
C07										

CO8					
CO9		\checkmark			