

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY 1 Colombo Street Yogyakarta 55281 Phone (0274) 565411, Ext. 1398, Fax (0274)548203 Website: http://kimia.fmipa.uny.ac.id, E-mail: kimia@uny.ac.id

Bachelor of Science in Chemistry

MODULE HANDBOOK

Module name:	Chemical Application of Group Theory					
Module level, if applicable:	Undergraduate					
Code:	KMA 6209					
Sub-heading, if applicable:	•					
Classes, if applicable:	-					
Semester:	7 th					
Module coordinator:	Prof. AK Prodjosantoso, Ph.D.					
Lecturer(s):	Prof. KH Sugivarto, Ph.D.					
Language:	English					
Classification within the	Compulsory Subject					
curriculum:						
Teaching format / class	100 minutes lectures, 120 structured activities and 120					
hours per week during the	individual study per week					
semester:						
Workload:	Total workload is 90,67 hours per semester which consists					
	of 100 minutes lectures, 120 structured activities and 120					
	individual study per week for 16 weeks					
Credit points:	2 SKS (3 ECTS)					
Prerequisites course(s):	-					
Course Outcomes	After taking this course, the students are expected to be					
	able to:					
	CO1 Explain the application of group theory concept in					
	chemical research.					
	CO2 Explains the concept of group theory: boundary of					
	5 types of elements, symmetry operations,					
	geometry hybridization models, orbital diagrams,					
	and the character of each symmetry operation.					
	CO3 Analyzing the findings of research results in the					
	application of group theory chemistry and					
	innovation					
Content:	Chemistry Group Theory explains the elements and					
	operations of symmetry, and their application in orbital					
	objects and various chemical geometries, the basic					
	requirements of a point group, and their application in					
	determining the character of non-generic representations,					
	matrices for degenerate representations to construct					
	character tables, application of group theory in the theory of					
	chemical bonds: hybridization models uk for various simple					
	and complex molecules, application of group theory in					
	chemical bond theory: hybridization models π for various					
	simple and complex molecules, application of group theory					
	in molecular orbitals for various simple molecules.					
	1. Molecular symmetry: definition of elements and					
	symmetrical operations, combination of symmetrical					
	operations, classes, and point groups.					

	 Group theory: definition of groups, representations of point group notations, non-degenerate representations, matrices and degenerate representations, and character tables Group theory application: sigma bonding hybridization, σ, to construct trigonal-ab3, tetrahedron-ab4, square-ab4, trigonalbipiramid-b5, pyramid square-ab5, and octahedron-ab6 Bond hybridization π Application of group theory in molecular orbital theory: H2O, BF3, ab4 tetrahedron, and octahedron ab6 Application of group theory: crystal field theory, d orbital division in symmetry Td and Oh 					
Study / exam achievements:	Attitude assessment is carried out at each meeting by observation and/or self-assessment techniques using the assumption that basically every student has a good attitude. The student is marked very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not taken into account in the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow:					
	No CO	Assessment	Assessment	Weight		
	1 CO1, CO2, CO3,	a. Assignments b. Activity c. Final Exam d. Midterm Exam	Presentation / written test Total	20% 20% 30% 30% 100%		
Forms of media:	Handout, Boa	rd, LCD Projector, La	ptop/Computer,	Module		
References:	 Cotton, F. H. (2003). Chemical Applications of Group Theory. India: Wiley Kristian H. Sugiyarto, (2001), Common Textbook: Aplikasi Teori Group: Teori Medan Kristal, pembelahan orbital <i>d</i> dalam simetri T<i>d</i> dan <i>Oh</i>, Jurusan Pendidikan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta Shriver, D.F., Langford, C.H., Atkins, P.W., (1990), <i>Inorganic Chemistry</i>, Oxford Press, New York, USA Oxtoby, D.W., (2002), <i>Principles of Modern Chemistry</i>, Nelson Thomson Learning Inc, Toronto, Canada. Cotton, F.A. (1990), <i>Chemical Applications of Group Theory</i>, John Wiley and Sons, 3rd Edition Rietman, E.A., Karp, R.L., and Tuszynski, J.A. (2011), Review and application of group theory to molecular system biology, <i>Theoretical Biology and Medical Modelling</i> 8, 21 					

PLO and CO mapping

PLO					
Attitude	General Skill	Knowledge	Specific Skill		

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1										
CO2										
CO3								\checkmark		