

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY 1 Colombo Street Yogyakarta 55281 Phone (0274) 565411, Ext. 1398, Fax (0274)548203 Website: http://kimia.fmipa.uny.ac.id, E-mail: kimia@uny.ac.id

Bachelor of Science in Chemistry

MODULE HANDBOOK

	Otresture Analysis of Increasis Compounds
Module name:	Structure Analysis of Inorganic Compounds
Module level, if applicable:	Undergraduate
Code:	KMA 6224
Sub-heading, if applicable:	-
Classes, if applicable:	-
Semester:	6 th
Module coordinator:	Prof. A. K. Prodjosantoso, Ph.D.
Lecturer(s):	Prof. A. K. Prodjosantoso, Ph.D.
Language:	Bahasa Indonesia, English
Classification within the	Elective Course
curriculum:	
Teaching format / class	Lectures: 100 minutes lectures, 120 structured activities
hours per week during the	and 120 individual study per week
semester:	
Workload:	Total workload of the activity is 90,67 hours per semester
	which consists of 100 minutes lectures, 120 structured
	activities and 120 individual study per week for 16 weeks
Credit points:	2 SKS (3 ECTS)
Prerequisites course(s):	-
Course Outcomes	After taking this course, the students have ability to:
	CO1. Able to define the d^n for transition metal in
	coordination compound and predict the type of its
	transition
	CO2. Able to apply the Tanabe-Sugano curve to analyze
	the UV-Vis spectra of coordination compound and

Content: Study / exam achievements:	 define the relation between the UV-Vis spectra character towards structure CO3. Able to define the band gap energy and optic properties of inorganic compound from its UV-Vis Spectra CO4. Able to interpret the FTIR spectra of inorganic compound CO5. Able to make relation, define, compare, and evaluate FTIR of aluminosilicate materials toward its chemical structure CO6. Able to analyze XRD diffractogram and describe the relation between the parameters and the structure of crystalline materials CO7. Able to define the relation between X Ray diffraction pattern with FTIR spectra data CO8. Able to analyze the microstructure of inorganic materials from SEM graph CO9. Able to do a search and describe the results of their study using their own language regarding the research in structure analysis of inorganic materials This course discusses elucidation of inorganic materials using UV-Vis Spectrometer, FT-IR, X-Ray Diffraction (XRD), and SEM instruments. The study focuses on the relation between the structure and properties of inorganic salts, coordination compound, aluminosilacate materials (zeolite, clay), and metal oxide. 					
	No	СО	Assessment Object	Assessment Technique	Weight	
	1	CO1, CO2, CO3, CO4, CO5,	Structural assignment: ability to rasionalize and describing	Assignment	15%	
	2	CO6, CO7, CO8, CO9	Structural assignment: ability to applying the formula according to context	Assignment	15%	
	3		Structural assignment: ability to collaborate, analyze, rasionalize, and communicate	Assignment	15%	
	4		Individual assignment: skill to collect literacy,	Assignment	15%	

		understanding,				
		and describing				
	5	Mid term exam	Written test	20%		
	6	Final exam	Written test	20%		
		Total 1				
Forms of media:	Board, LCD Projector, handouts, PPT slides, and stationaries					
Reference:	A. Ángel Vegas Molina, 2018, Structural Models of					
	Inorganic Crystals. From the Elements to the					
	Compou	nds, 1 st ed., Universi	tat Politècnica de	e València		
	B. Jan Chyba, Martin Novák, Petra Munzarová, Jan					
	Novotný	, and Radek Mare	k, 2018, Throu	igh-Space		
	Paramag	gnetic NMR Effects i	n Host–Guest C	omplexes:		
	Potential Ruthenium(III) Metallodrugs with Macroc					
	Carriers, Inorganic Chemistry, 57, 15, 8735-8747					
	C. Lukáš	Jeremias, Jan No	ovotný, Michal	Repisky,		
	Stanislav Komorovsky, and Radek Marek, 2018,					
	Interplay	of Through-Bond I	Hyperfine and S	Substituent		
	Effects	on the NMR Ch	emical Shifts	in Ru(III)		
	Complexes, Inorganic Chemistry, 57, 15, 8748-8759					
	D. Longfei Li, Ming Lei, Li Liu, Yaoming Xie, and Henry F. Schaefer III, 2018, Metal–Substrate Cooperation Mechanism for Dehydrogenative Amidation Catalyzed by a PNN-Ru Catalyst, <i>Inorganic Chemistry</i> , 57, 15, 8778-8787					
	E. Muller U (2008), <i>Inorganic Structural Chemistry</i> , 2 nd Edition, Wiley VCH					
	F. Sangeeta, D., LaGraff, J.R. (2004), <i>Inorganic Materials</i> <i>Chemistry Desk Reference</i> , 2 nd Edition, CRC Press					
	G. Setia Budi, A (2007), Karakterisasi Material: Prinsip dan Aplikasinya dalam Penelitian Kimia, Erlangga					
	H. Suminar, S (1999), Analisis Data Difraksi dengan Metode Rietveld, Pustaka Mandiri					

PLO and CO mapping

	PLO									
СО	Attitude	Generi	ic Skills		Knowledge			Specific Skills		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1					\checkmark					
CO2					√					
CO3					√					
CO4							✓			
CO5							✓			
CO6					√					
C07					√					
CO8									✓	
CO9					√					