

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY 1 Colombo Street Yogyakarta 55281 Phone (0274) 565411, Ext. 1398, Fax (0274)548203 Website: http://kimia.fmipa.uny.ac.id, E-mail: kimia@uny.ac.id

Bachelor of Science in Chemistry

MODULE HANDBOOK

Module name:	Physics for Chamistry
	Physics for Chemistry
Module level, if applicable: Code:	Undergraduate KIM6302
Sub-heading, if applicable:	KIIVI0302
Classes, if applicable:	2
Semester:	Z 1 st
Module coordinator:	Prof. Dr. Mundilarto
Lecturer(s):	1. Prof. Dr. Mundilarto
Lecturer(s).	2. Rita Prasetyowati, S.Si., M.Si.
Language:	Bahasa Indonesia and English
Classification within the	Compulsory Course
curriculum:	
Teaching format / class	Lectures: 100 minutes lectures, 120 structured activities
hours per week during the	and 120 individual study per week
semester:	Laboratory work: 170 minutes includes the laboratory
	work and it's reporting per week
Workload:	Total workload is 136 hours per semester which consists of
	150 minutes lectures, 180 structured activities, 180
	individual study, and also 170 minutes laboratory work with
	it's reporting per week for 16 weeks
Credit points:	3 SKS (5 ECTS)
Prerequisites course(s):	-
Course Outcomes	After taking this course, the students have ability to:
	CO1. Demonstrate piety and work ethics during the lectures
	and practicums
	CO2. Critically explain the basic concept of measurement in
	physics and its function on a daily basis
	CO3. Understand the concept of vector and implement the
	vector operation to solve problems in physics
	systematically
	CO4. Explain and implement the concept of kinematics and
	dynamics to solve problems of physics oriented to a
	daily life
	CO5. State the concept of constant and resilience, and analyze their functions on a real life
	CO6. Analyze the concept of heat and calculate coefficient
	of linear expansion, and implement their functions to
	solve problems in physics on a daily life
	CO7. Structurally analyze the concept of liquid surface
	tension and fluid mechanics related to physics
	CO8. Explain the concept, application, and function of static
	and dynamic equilibrium in a daily life
	CO9. Be independent when finishing structured activities
	and individual studies

Content: Study / exam achievements:	 CO10. Be responsible when completing practicums CO11. Explain the law of thermodynamics (1-3) and and its application to propose innovation insolving problems related to chemistry CO12. Systematically evaluate the law of thermodynamics (1-3) to bring innovation in solving problems related to chemistry This course discusses the introduction to physics, vector analyses, kinematics, dynamics, contant and resilience, heat, coefficient of linear expansion, fluid mechanics, static and elastic equilibrium, the first law of thermodynamics, kinetic theory of gasses, and the second law of thermodynamics. 						
	No						
	1	CO3, CO4, CO5, CO6, and CO7	Object Individual study	Technique Tasks	10%		
	2	CO10	Practicum	Observing practicum	20%		
	3	CO6,CO7, CO8, CO11 and CO12	Structured activities	Observing presentation	10%		
	4	CO1 and CO9	Piety, work ethics and attitude in the learning process	Observing attitude	10%		
	5	CO2 and CO6 CO2, CO3, CO4, CO5, CO6, CO7, CO8, CO11, and CO12	Mid term Final term	Written test Written test	25% 25%		
Forms of media:	Total100%Board, stationaries, LCD projector, PPT slides, and						
	hand	outs			An de l'		
Reference:	 A. Bastian E. Rapp, 2017 Microfluidics: Modelling, Mechanics and Mathematics. Elsevier B. Bahman Zohuri 2018. Physics of Cyrogenic. An Ultralow Temperature Phenomenon 2018, Pages 259- 298 C. Kauzmann, Walter, 2012, Kinetic theory of gases, New York, NY : Dover Publications. D. Halliday, D., & Resnick, R. (1984). <i>Fiiska Jilid</i> I. Translated by P. Silaban dan E. Sucipto. Jakarta: Erlangga. E. Djoniputro, B.D. (1985). <i>Teori Ketidakpastian</i>. Bandung: ITB F. Sutrisno. (1986). <i>Seri fisika dasar: Mekanika</i>. Bandung: ITB 						

termofisika. Bandung: ITB

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2							√			
CO3							√			
CO4							√			
CO5							√			
CO6							√			
C07							√			
CO8							√			
CO9		✓								
CO10		✓								
CO11									\checkmark	
CO12									\checkmark	