

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF CHEMISTRY 1 Colombo Street Yogyakarta 55281 Phone (0274) 565411, Ext. 1398, Fax (0274)548203 Website: <u>http://kimia.fmipa.uny.ac.id</u>, E-mail: <u>kimia@uny.ac.id</u>

Bachelor of Science in Chemistry

MODULE HANDBOOK

Module name:	Reaction Mechanism of Organic Compound						
Module level, if applicable:	Undergraduate						
Code:	KMA 6233						
Sub-heading, if applicable:	-						
Classes, if applicable:	-						
Semester:	6 th						
Module coordinator:	Prof. Dr. Sri Handayani						
Lecturer(s):	Prof. Dr. Sri Handayani						
Language:	Bahasa Indonesia and English						
Classification within the							
curriculum:							
Teaching format / class	100 minutes lectures, 120 structured activities and 120						
hours per week during the	individual study per week						
semester:							
Workload:	Total workload is 90,67 hours per semester which consists of						
	100 minutes lectures, 120 structured activities and 120						
	individual study per week for 16 weeks						
Credit points:	2 SKS (3 ECTS)						
Prerequisites course(s):	-						
Course Outcomes	After taking this course, the students are expected to be able						
	to:						
	CO1 Explain the effect of radical reactions on the						
	mechanism of organic reactions in a chemical study						
	CO2 Understand the concept of reaction mechanism						
	through analysis of the results of research into						
	organic reaction mechanisms						
	CO3 Explain the contribution of the concept of organic						
	reaction mechanisms to the advancement of						
	chemical research innovations						
Content:	This course provides experience for students to study the						
	factors that influence the mechanism of organic reactions, the						
	mechanism of organic chemical reactions based on the						
	structure and reactivity of functional groups, as well as the						
	mechanism of radical reactions and their applications.						
	 Nucleophilic addition to the double bond 						
	2. Nucleophilic addition to conjugated double bonds						
	3. Electrophilic additions						
	4. Nucleophilic substitution						
	5. Electrophilic substitution						
	6. Elimination						
Study / exam achievements: Attitude assessment is carried out at each mee							
	observation and/or self-assessment techniques using the						
	assumption that basically every student has a good attitude.						

	The student is marked very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not taken into account in the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow:							
	No	CO	Assessment Technique	Weight				
	1 CO1, a. Assignments		a. Assignments	Presentation	20%			
		CO2,	b. Activity	/ written test	20%			
		CO3,	c. Final Exam		30%			
			d. Midterm Exam		30%			
	Total 100%							
Forms of media:	Handout, Board, LCD Projector, Laptop/Computer, Module							
References:	• M	ichael E	3 Smith, (2020), Re	action, Mecha	nism and			
	Structure eight edition.							
	Reinhard Bruckner, Organic Mechanisms Reactions, Stereochemistry and Synthesis, (2010)							

PLO and CO mapping

	PLO									
	Attitude	General Skill		Knowledge			Specific Skill			
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1										
CO2										
CO3										